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Abstract. We introduce and perform numerical simulations of a lattice model for the
compaction of a granular system based on the ideas of random sequential adsorption and
diffusional relaxation. The lattice is composed by a given number of horizontal layers where
nonoverlapping particles diffuse. Besides diffusion within its own layer a particle suffers a
downfall to the layer below whenever there is enough space there. We restrict ourselves to the
case of one-dimensional layers and particles that occupyk consecutive sites. We observe time
algebraic decay in the density of particles with exponents that are in several cases distinct from
mean-field values.

A granular medium poured into a recipient and subject to mechanical perturbation displays
a slow increase of density with time, the origin of this behaviour being the existence of
space regions and local configurations that cannot be accessed unless to involve the motion
of a large number of grains. A number of different approaches have been proposed in order
to connect this observed slow compaction with effects of excluded volume and geometrical
frustration [1] without reaching a unique conclusion concerning the temporal behaviour
of the density change; experimental results obtained at the University of Chicago [2] are
well described by logarithmic curves and the same behaviour is observed in some cellular
automata, such as the tetris-like model of Cagliotiet al [3], the frustrated percolation model
of Coniglio et al [4], and other phenomenological models [5], however, different behaviours
are obtained in other circumstances [1, 2, 6, 7].

Density relaxation can depend sensibly on many factors, such as geometry of grains,
polydispersity, nature of friction forces, etc. As a simplified version of a granular system
we consider a lattice of sites composed by a given number of horizontal layers in which
sites may be occupied by the centre of identical particles. By taking the linear size of
the particles greater than the lattice spacing excluded volume effects arise and relaxation
can very likely be expected to be slower than exponential. We consider models for which
friction and more complicated steric interactions are disregarded, so that the dynamics is
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ruled only by inertial and excluded volume effects. Our aim is not to obtain a realistic
model for granular compaction, but to study the relaxation process in circumstances that
are simple enough to allow for an understanding of the dynamics of the process.

It has been observed that the compaction process which leads to maximum obtainable,
random close packing, density is not reversible [2] and is obtained in the regime of low-
energy perturbations. In contrast, energical shaking leads to states of lower density which
appear to be reversible. Shaking or tapping at increasing energies involves large-scale
collective motion of increasingly larger groups of grains, whereas low-intensity perturbations
give rise to the motion of a few grains at a time, which in our model is represented by
the diffusion of particles. In order to maintain dynamics at the simplest level we consider
for the moment only horizontal (intra-layer) diffusion and downward movement. Particles
diffuse along their own layer and owing to occasional fluctuations, regions of empty sites
large enough to contain one more particle are created. If a particle of the neighbour upper
plane is in correspondence with the newly created void it falls down, thus increasing the
density of the lower layer and decreasing the density of the initial one. In a similar way a
particle that, as a result of diffusion, finds itself upon a pre-existent void falls into the lower
layer if the void is large enough to accept it.

In fact, in a real granular medium the final density depends on two more factors: (a) the
way of preparation, i.e. the initial configuration and (b) the characteristics of the mechanical
perturbation, for example, shaking or tapping amplitude and acceleration [1, 2]. A possible
way of preparing the model under consideration is to fill the lattice layers in sequence from
bottom to top. Initially one particle at a time is randomly placed in the bottom layer of
the lattice without overlapping until no more particles can be placed in the plane. Then the
upper nearest layer is filled according to the same rule, and so on for the others layers. This
kind of preparation has the advantage of being well defined and statistically reproducible. In
fact the process of placing sequentially nonoverlapping particles on lattices has been widely
investigated in recent years. It is known asrandom sequential adsorption(RSA) [8] and has
the remarkable property that the coverage so obtained is nonrandom in the thermodynamic
limit. The present lattice model establishes a correspondence with the above-mentioned
models and, moreover, it can be prepared in an initial state that, though stochastic in nature,
possesses a well-defined and reproducible initial densityρ. This state is called ajamming
state, and its density can in some cases be computed exactly [8]. In the past, assemblies
of rigid squares and cubes have also been considered for studying some features of the
liquid–solid transition [9, 10]. This allows for inferring more properties of the model that
will be discussed elsewhere [11].

In order to carefully analyse the dynamical properties of the model and to see in which
way slow relaxation behaviour is generated we proceed to specify the rules for the simplest
system compatible with the above dynamics: we consider first a one-dimensional lattice
with identical particles, saidk-mers, each one occupyingk consecutive sites of the lattice.
The particles do not overlap but can diffuse randomly with jumping rateD. The system
is initially in the jamming state, i.e. no more particles can be added to the lattice before
a rearrangement of the others. Subsequent diffusion gives rise to the formation of voids
of size equal to or larger thank lattice spacings, allowing for the introduction of other
particles that we assume to occur through an ideal reservoir which places a new particle,
at a deposition rateR, when at leastk consecutive empty sites are available. The resulting
dynamics is related to the diffusional relaxation in RSA models [12]. WhenR → ∞
we find thediffusion-limited deposition(DLD) model in which particles are added to the
lattice as soon as required space is made available through diffusion. This situation also
corresponds to taking the limitD/R→ 0.
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Figure 1. Numerically obtained values ofρv(t) for the one-dimensional DLD ofk-mers
(averages over many realizations of 10 000 sites lattices). From left to right:k = 3, 4, 5, 6, 8.
Resulting asymptotic exponents are reported in (4).

Temporal dependence of density in RSA models with diffusional relaxation has been
investigated in the 1990s [12] and its expected behaviour can be derived by simple mean-
field arguments. Instead of thinking of diffusingk-mers it is convenient to think in terms
of diffusing vacancies, the locations of empty sites. In fact, in order to add a particle to the
system it is necessary thatk vacancies meet themselves to form ak vacancy. If we let ρv
be the fraction of vacant sites the above requirements yields

dρv
dt
∝ −ρkv (1)

from which it follows

ρv ∼ t−δk with δk = 1

k − 1
. (2)

The above result makes available one mechanism for the onset of a logarithmic behaviour.
In fact, equation (2) implies that the algebraic relaxation becomes increasingly slower
as k increases, attaining a logarithmic behaviour in thek → ∞ limit. This actually
corresponds to considering a continuum system, with a vanishing lattice spacinga such
thatak = constant. The limit can be carried out in different ways, bringing us to somewhat
strictly different results [13], but in any case a logarithmic increase of density is found
for such a one-dimensional system. For many systems the continuum limit is certainly of
the most relevance, but a very important point is that, according to equation (2), a near
logarithmic behaviour is attained in practice for any largek.

Asymptotic algebraic relaxation in DLD is very well reproduced by numerical
simulations. However, exponents given by equation (2) are generally incorrect. In particular,
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Figure 2. Exponentδk versusk from mean field (curve) and simulations (diamonds).

in the casek = 2 it is well known that the exponent is12 [14], a sign that the process is
governed by fluctuations of statistics rather than by averages. The correct exponent may in
fact be obtained by considering that the timet required by two diffusing vacancies to meet
is proportional to the square of their relative distancer, and sincer ∝ 1/ρv, we find

ρv ∼ t−1/2. (3)

Besides this argument the casek = 2 admits exact solutions in many different circumstances
[15, 16], and several rigorous results have been established for the probability of two random
walkers to meet in dimension from one [17] to three [18]. In contrast large-time behaviour
for higher k is not generally known. Moreover, numerical simulation for determining the
annihilation rate ofk random walkers on a one-dimensional lattice display exponents that
are generally different from mean-field ones but closer with those of ak-mer DLD†.

It has been argued that the mean field should work fork > 4 [14], this occurring
for large enough times, namelyt � exp(k)/k. We have tried to test this hypothesis by
performing numerical simulations of thek-mer DLD model for different values ofk. Some
numerical results are shown below together with the mean-field results

k 2 3 4 5 6 8
δk (mean field) 1 0.50 0.33 0.25 0.20 0.14
δk (numerical) 0.50 0.40 0.35 0.29 0.27 0.25

(4)

and also in figures 1 and 2.
For k < 4 numeric exponents are lower than mean-field ones while fork > 4 they

are higher, and are about the same fork = 4. To be reasonably certain of reaching an

† Numerical simulations ofk reaction walkers show exponentsδk with small discrepancies from the present model,
with the exception of the casesk = 2 andk = 4 when they are in agreement [19].
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Figure 3. Decrease of vacancy densityρv for DLD of pentamers on a lattice of 105 sites (thick
curve) and for the caseD/R = 999 (thin curve). The exponent related to the latter case is the
mean-field one. In fact from the simulationδ5 = 0.25 (the timescale of this curve has been left
translated by 104 units).

asymptotic regime in computer simulations it requires the use of wide systems and large
computational time, thus it is not easy to say a definitive word on the validity of the mean-
field figures. In any case figure 3 shows that the temporal decrease ofρv down to values
of about 0.01 for k = 5 in a lattice with 105 sites does not exhibit any apparent deviation
from the exponent in (4) (the simulation took more than 150 h of CPU time on a 466 MHz
processor).

It has also been argued that the mean field should work at shorter times if the ratioD/R

is nonvanishing, since long-time diffusion without deposition may decorrelate the system.
We did not observe such a behaviour for values ofD/R of about 10–100 on lattices of
105 sites. However, simulation withD/R ≈ 1000 also shown in figure 3, shows such
a behaviour, suggesting that the mean-field regime had not yet been reached within the
considered time for lower values ofD/R. In other words, the smaller the value ofD/R
the larger the time it takes to reach the mean-field behaviour. This statement implies that
for D/R = 0 (DLD model) there will be no mean-field behaviour in agreement with the
numerical result shown in (4).

Heretofore we have considered the case of just a single (one-dimensional) layer. In
order to investigate the two-dimensional case let us start by studying the case of two- (one-
dimensional) layers. We continue to consider that the upper layer obeys DLD, that is one
more k-mer is added to it as soon as ak vacancy is made available by diffusion. The
rule is different for the lower layer where in order for a newk-mer to be added, not only
a large enough void is necessary but, also, ak-mer must occupy the upper layer in exact
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Figure 4. Dimer relaxation in a system made up of two layers of 50 000 sites each. The density
of both layers increases withδ = 0.5 as for a single layer.

correspondence with thek vacancy. In principle this makes the dynamics in the lower layer
very different, sincem vacancies withm > k can be formed.

Let us consider, for instance, the case of dimers (k = 2). Using the same arguments
as before we can compute mean-field exponents by considering the two possible processes
that follow a diffusion. Process (a) corresponds to the formation of a di-vacancy in the
lower layer, in correspondence with a dimer in the upper layer. Process (b) corresponds to
a dimer in the upper layer that is displaced to occupy the sites which are upon a pre-existing
di- or trivacancy (in fact no large vacancies are allowed with only two layers). If we letρ1

andρ2 be the densities of dimers respectively in lower and upper layers, the rates related
to processes (a) and (b) are

Ra = ρ2
1(1− ρ1)

2ρ2
2 (5)

and

Rb = ρ2
2(1− ρ2)

2(1− ρ1)
2 (6)

respectively, leading to the time evolution equation for the density of the lower layer
dρ1/dt = Ra + Rb. In the long-time limit,ρ1 ∼ 1 andρ2 ∼ 1 so that

dρ1

dt
= (1− ρ1)

2+ (1− ρ2)
2(1− ρ1)

2. (7)

The time evolution of the upper layer is independent of the lower layer and in the long-time
limit is given by

dρ2

dt
= (1− ρ2)

2. (8)
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Figure 5. Dimer relaxation in more layers. A stationary phase at short time, owing to the
presence of many layers, can be observed, after which the exponent approaches the same as that
for one layer. Simulation was made by conserving the number of dimers.

Assuming algebraic dependence 1− ρi ∼ t−αi one obtains to leading order in timeαi = 1
for both i = 1 and 2, since dynamics is dominated by the process (a). This is the same
mean-field exponent obtained in the case of a single layer. Since in the case of a single
layer the mean field leads to an incorrect value we also expect it to happen in this case,
even if it happens to be true that the two exponents are identical for the two layers. In fact,
our numerical simulations show thatαi = 1

2 for both i = 1 and 2 (figure 4). The dominance
of process (a) in the long-time limit, which leads to the identity of the two exponents, is an
indication that the upper layer works like a reservoir of particles for the lower layer.

We do not write down more complicated equations for increasing numbers of layers,
and proceed directly to discuss the numerical results. We simulated systems of dimers up to
10 000 sites× 100 layers. We observed that the density of each single layer fluctuates more
when compared with the case of only a few layers. Moreover, a delay between the initial
time and the time at which a sensible increase of density start to appear arises. This delay
becomes increasingly larger as the number of layers is increased, giving rise to an overall
initial slowing in the density change, as shown in figure 5, a fact that could be relevant
to the understanding of the logarithmic behaviour also observed at short times in many
systems [2–5]. However, no change is observed in the large-time dependence of the total
density. We have also checked the influence of the top boundary condition by imposing
conservation of the number of particles, i.e. by removing the reservoir on the top. In this
case a few of the upper layers of the lattice emptied during the process, but we could not
observe any change in the total density behaviour.

We obtained the same results by simulating systems made by trimers, so we expect
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Figure 6. Relaxation of a conserved number of pentamers in two lattices of different sizes. The
exponents found are consistent with that of a single layer (δ = 0.30, δ = 0.31).

the exponent also not to change fork = 4. However, the behaviour in one dimension for
k > 4 suggested that we investigate the casek = 5. In fact the interaction among different
layers is such that diffusion may occur for a very long time before a vacancy succeeds
in being filled, thus creating a situation similar to the caseD/R � 1 discussed above in
one dimension. The numerical effort required in this case is much larger than in the one-
dimensional case. Here we report the result from a lattice made by 2000 sites× 20 layers
and another made by 4000 sites× 100 layers (see figure 6); as a consequence of the large
time required, the two simulations stop at different times and densities. However, they seem
to indicate that the same exponent as in the one-dimensional case withR→∞ still holds
(cf the different behaviour in figure 3). This point is of some relevance because validity
of mean-field exponents would lead toδ → 0 (consistent with a logarithmic behaviour) in
the continuum limit. In the opposite case a different result fork→∞ cannot be excluded.
Finally we wish to remark that other behaviours than those discussed here can be obtained
by adopting different rules for the proposed lattice model [11].
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de S̃ao Paulo (LCCA-USP) and by a grant from Universidade de São Paulo.
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